КОГНИТИВИСТИдейное ядро²Степенные законы, распределения Парето и закон Зипфа
Библиография
Прологи: наука о сознании становится точной
Манифест когнитивиста
.
Узелки на распутку
.
Прологи
.
Степенные законы, распределения Парето и закон Зипфа
Когнитивный уровень
.
Мерцающие зоны
.
Органическая логика: резюме
Карта органической логики
.
Хвост ящерки. Метафизика метафоры.
.
Опус 1/F
.
Anschauung, научный метод Гёте
.
Закон серийности Пауля Каммерера
.
Ранние признаки критических переходов
.
Слабые сигналы
.
Меметика
.
Системный анализ и чувствительные точки
.
Спиральная динамика
.
Библиография
 
[1] F. Auerbach, Das Gesetz der Bevolkerungskonzentration. Petermanns Geographische Mitteilungen 59, 74–76 (1913).
[2] G. K. Zipf, Human Behaviour and the Principle of Least Effort. Addison-Wesley, Reading, MA (1949).
[3] B. Gutenberg and R. F. Richter, Frequency of earthquakes in Сalifornia. Bulletin of the Seismological Society of America 34, 185–188 (1944).
[4] G. Neukum and B. A. Ivanov, Crater size distributions and impact probabilities on Earth from lunar, terrestial- planet, and asteroid cratering data. In T. Gehrels (ed.), Hazards Due to Comets and Asteroids, pp. 359–416, University of Arizona Press, Tucson, AZ (1994).
[5] E. T. Lu and R. J. Hamilton, Avalanches of the distribution of solar flares. Astrophysical Journal 380, 89–92 (1991).
[6] M. E. Crovella and A. Bestavros, Self-similarity in World Wide Web traffic: Evidence and possible causes. In B. E. Gaither and D. A. Reed (eds.), Proceedings of the 1996 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pp. 148–159, Association of Computing Machinery, New York (1996).
[7] D. C. Roberts and D. L. Turcotte, Fractality and self-organized criticality of wars. Fractals 6, 351–357 (1998).
[8] J. B. Estoup, Gammes Stenographiques. Institut Stenographique de France, Paris (1916).
[9] D. H. Zanette and S. C. Manrubia, Vertical transmission of culture and the distribution of family names. Physica A 295, 1–8 (2001).
[10] A. J. Lotka, The frequency distribution of scientific production. J. Wash. Acad. Sci. 16, 317–323 (1926).
[11] D. J. de S. Price, Networks of scientific papers. Science 149, 510–515 (1965).
[12] L. A. Adamic and B. A. Huberman, The nature of markets in the World Wide Web. Quarterly Journal of Electronic Commerce 1, 512 (2000).
[13] R. A. K. Cox, J. M. Felton, and K. C. Chung, The concentration of commercial success in popular music: an analysis of the distribution of gold records. Journal of Cultural Economics 19, 333–340 (1995).
[14] R. Kohli and R. Sah, Market shares: Some power law results and observations. Working paper 04.01, Harris School of Public Policy, University of Chicago (2003).
[15] J. C. Willis and G. U. Yule, Some statistics of evolution and geographical distribution in plants and animals, and their significance. Nature 109, 177–179 (1922).
[16] V. Pareto, Cours d’Economie Politique. Droz, Geneva (1896).
[17] G. B. West, J. H. Brown, and B. J. Enquist, A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).
[18] D. Sornette, Critical Phenomena in Natural Sciences, chapter 14. Springer, Heidelberg, 2nd edition (2003).
[19] M. Mitzenmacher, A brief history of generative models for power law and lognormal distributions. Internet Mathematics 1, 226–251 (2004).
[20] M. L. Goldstein, S. A. Morris, and G. G. Yen, Problems with fitting to the power-law distribution. Eur. Phys. J. B 41, 255–258 (2004).
[21] H. Dahl, Word Frequencies of Spoken American English. Verbatim, Essex, CT (1979).
[22] S. Redner, How popular is your paper? An empirical study of the citation distribution. Eur. Phys. J. B 4, 131–134 (1998).
[23] A. P. Hackett, 70 Years of Best Sellers, 1895-1965. R. R. Bowker Company, New York, NY (1967).
[24] W. Aiello, F. Chung, and L. Lu, A random graph model for massive graphs. In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pp. 171–180, Association of Computing Machinery, New York (2000).
[25] H. Ebel, L.I. Mielsch, and S. Bornholdt, Scale-free topology of e-mail networks. Phys. Rev. E 66, 035103 (2002).
[26] B. A. Huberman and L. A. Adamic, Information dynamics in the networked world. In E. Ben-Naim, H. Frauenfelder, and Z. Toroczkai (eds.), Complex Networks, number 650 in Lecture Notes in Physics, pp. 371–398, Springer, Berlin (2004).
[27] M. Small and J. D. Singer, Resort to Arms: International and Civil Wars, 1816-1980. Sage Publications, Beverley Hills (1982).
[28] S. Miyazima, Y. Lee, T. Nagamine, and H. Miyajima, Power-law distribution of family names in Japanese societies. Physica A 278, 282–288 (2000).
[29] B. J. Kim and S. M. Park, Distribution of Korean family names. Preprint cond-mat/0407311 (2004).
[30] J. Chen, J. S. Thorp, and M. Parashar, Analysis of electric power disturbance data. In 34th Hawaii International Conference on System Sciences, IEEE Computer Society (2001).
[31] B. A. Carreras, D. E. Newman, I. Dobson, and A. B. Poole, Evidence for self-organized criticality in electric power system blackouts. In 34th Hawaii International Conference on System Sciences, IEEE Computer Society (2001).
[32] E. Limpert, W. A. Stahel, and M. Abbt, Log-normal distributions across the sciences: Keys and clues. Bioscience 51, 341–352 (2001).
[33] M. E. J. Newman, S. Forrest, and J. Balthrop, Email networks and the spread of computer viruses. Phys. Rev. E 66, 035101 (2002).
[34] M. O. Lorenz, Methods of measuring the concentration of wealth. Publications of the American Statisical Association 9, 209–219 (1905).
[35] H. A. Simon, On a class of skew distribution functions. Biometrika 42, 425–440 (1955).
[36] G. U. Yule, A mathematical theory of evolution based on the conclusions of Dr. J. C. Willis. Philos. Trans. R. Soc. London B 213, 21–87 (1925).
[37] G. A. Miller, Some effects of intermittent silence. American Journal of Psychology 70, 311–314 (1957).
[38] W. Li, Random texts exhibit Zipf’s-law-like word frequency distribution. IEEE Transactions on Information Theory 38, 1842–1845 (1992).
[39] C. E. Shannon, A mathematical theory of communication I. Bell System Technical Journal 27, 379–423 (1948).
[40] C. E. Shannon, A mathematical theory of communication II. Bell System Technical Journal 27, 623–656 (1948).
[41] T. M. Cover and J. A. Thomas, Elements of Information Theory. John Wiley, New York (1991).
[42] B. B. Mandelbrot, An information theory of the statisitical structure of languages. In W. Jackson (ed.), Symp. Applied Communications Theory, pp. 486–502, Butter- worth, Woburn, MA (1953).
[43] W. J. Reed and B. D. Hughes, From gene families and genera to incomes and internet file sizes: Why power laws are so common in nature. Phys. Rev. E 66, 067103 (2002).
[44] J.-P. Bouchaud, More L ́evy distributions in physics. In M. F. Shlesinger, G. M. Zaslavsky, and U. Frisch (eds.), L ́evy Flights and Related Topics in Physics, number 450 in Lecture Notes in Physics, Springer, Berlin (1995).
[45] N. Jan, L. Moseley, T. Ray, and D. Stauffer, Is the fossil record indicative of a critical system? Adv. Complex Syst. 2, 137–141 (1999).
[46] D. Sornette, Mechanism for powerlaws without self-organization. Int. J. Mod. Phys. C 13, 133–136 (2001).
[47] R. H. Swendsen and J.-S. Wang, Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett. 58, 86–88 (1987).
[48] K. Sneppen, P. Bak, H. Flyvbjerg, and M. H. Jensen, Evolution as a self-organized critical phenomenon. Proc. Natl. Acad. Sci. USA 92, 5209–5213 (1995).
[49] M. E. J. Newman and R. G. Palmer, Modeling Extinction. Oxford University Press, Oxford (2003).
[50] D. J. de S. Price, A general theory of bibliometric and other cumulative advantage processes. J. Amer. Soc. In- form. Sci. 27, 292–306 (1976).
[51] P. L. Krapivsky, S. Redner, and F. Leyvraz, Connectivity of growing random networks. Phys. Rev. Lett. 85, 4629– 4632 (2000).
[52] A.-L. Barab ́asi and R. Albert, Emergence of scaling in random networks. Science 286, 509–512 (1999).
[53] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Structure of growing networks with preferential linking. Phys. Rev. Lett. 85, 4633–4636 (2000).
[54] R. K. Merton, The Matthew effect in science. Science 159, 56–63 (1968).
[55] P. J. Reynolds, W. Klein, and H. E. Stanley, A real-space renormalization group for site and bond percolation. J. Phys. C 10, L167–L172 (1977).
[56] K. G. Wilson and J. Kogut, The renormalization group and the ǫ-expansion. Physics Reports 12, 75–199 (1974).
[57] P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987).
[58] B. Drossel and F. Schwabl, Self-organized critical forest-fire model. Phys. Rev. Lett. 69, 1629–1632 (1992).
[59] P. Grassberger, Critical behaviour of the Drossel-Schwabl forest fire model. New Journal of Physics 4, 17 (2002).
[60] P. Bak, How Nature Works: The Science of Self-Organized Criticality. Copernicus, New York (1996).
[61] P. Bak and C. Tang, Earthquakes as a self-organized critical phenomenon. Journal of Geophysical Research 94, 15635–15637 (1989).
[62] Z. Olami, H. J. S. Feder, and K. Christensen, Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Phys. Rev. Lett. 68, 1244–1247 (1992).
[63] P. Bak and K. Sneppen, Punctuated equilibrium and criticality in a simple model of evolution. Phys. Rev. Lett. 74, 4083–4086 (1993).
[64] J. M. Carlson and J. Doyle, Highly optimized tolerance: A mechanism for power laws in designed systems. Phys. Rev. E 60, 1412–1427 (1999).
[65] J. M. Carlson and J. Doyle, Highly optimized tolerance: Robustness and design in complex systems. Phys. Rev. Lett. 84, 2529–2532 (2000).
[66] K. Sneppen and M. E. J. Newman, Coherent noise, scale invariance and intermittency in large systems. Physica D 110, 209–222 (1997).
[67] D. Sornette and R. Cont, Convergent multiplicative processes repelled from zero: Power laws and truncated power laws. Journal de Physique I 7, 431–444 (1997).
[68] D. Sornette, Multiplicative processes and power laws. Phys. Rev. E 57, 4811–4813 (1998).
[69] X. Gabaix, Zipf’s law for cities: An explanation. Quarterly Journal of Economics 114, 739–767 (1999).
[70] P. Sibani and P. B. Littlewood, Slow dynamics from noise adaptation. Phys. Rev. Lett. 71, 1482–1485 (1993).
[71] P. Sibani, M. R. Schmidt, and P. Alstrøm, Fitness optimization and decay of the extinction rate through biological evolution. Phys. Rev. Lett. 75, 2055–2058 (1995).
Главные темы
Внимание (8)Геогештальт (1)Гештальт (16)Динамика внимания (5)Инсайт (5)Интуиция (2)Кибернетика (5)Когнитивное управление (6)Когнитивный анализ (4)Когнитивный словарь (5)Культура наблюдения (5)Мерцающие зоны (7)Метафизика (3)Метафора (13)Механизмы восприятия (15)Мифы и парадигмы (7)Органическая логика (5)Прогнозирование (6)Роль языка (4)Симметрии (5)Синхронизмы (5)Сложные системы (10)Степенной закон (8)Творческое мышление (5)Три уровня систем (4)Управление знаниями (3)Фазы развития (7)Фракталы (18)Цветные шумы (9)
КОГНИТИВИСТ: когнитивные методы и технологии © Роман Уфимцев, при поддержке Ателье ER