КОГНИТИВИСТИдейное ядро²Прологи
Пролог 113. Смысл принципа максимума энтропии
Прологи: наука о сознании становится точной
Манифест когнитивиста
.
Узелки на распутку
.
Прологи
Пролог 1. Когнитивный порядок
Пролог 2. Сигнатура характерного масштаба
Пролог 3. Степенной закон
Пролог 4. Три типа степенных распределений
Пролог 5. Закон Зипфа, сигнатура β = 1
Пролог 6. Цветные шумы, сигнатура α = 1
.
Пролог 7. Розовый шум и модель Бака-Снеппена
Пролог 8. Розовый шум и модель релаксации
Пролог 9. Розовый шум: шипелки и фрактальное блуждание
Пролог 10. Население городов и закон Зипфа
Пролог 11. Масштабно-инвариантные сети
Пролог 12. Фракталы и закон Зипфа
Пролог 13. Дробление континуума
Пролог 14. Социально-географические волокна
Пролог 15. Закон Зипфа в случайных текстах
Пролог 16. Тексты как фракталы
Пролог 17. Когнитивные фракталы
Пролог 18. β и размерность Хаусдорфа
Пролог 19. Образы когнитивных фракталов
Пролог 20. Когнитивные волокна
Пролог 21. Математика когнитивных фракталов
Пролог 22. Стохастические когнитивные фракталы
Пролог 23. Сравниваем Россию и Польшу
Пролог 24. От Швейцарии до Афганистана
Пролог 25. Гармониум
Пролог 26. Шум когнитивных фракталов
Пролог 27. Шум когнитивных процессов
Пролог 28. Розовый шум в поведении людей
Пролог 29. Шум в динамике зрительного внимания
Пролог 30. Изображения и двухмерный розовый шум
.
Пролог 31. Физическая и когнитивная релаксация
Пролог 32. Когнитивная релаксация и цветные шумы
Пролог 33. ВТОРОЙ ЦИКЛ. Дробление времени
Пролог 34. Когнитивное дробление времени
Пролог 35. Время как текст
Пролог 36. События и причинность
Пролог 37. Четыре причины Аристотеля
Пролог 38. Экзогенные причины
Пролог 39. Генеративные модели причинности
Пролог 40. Генеративные модели причинности, часть 2
Пролог 41. Гештальт-причинность
Пролог 42. Тау-модель
Пролог 43. Я-состояния и тироны
Пролог 44. Параметры тау-модели
.
Пролог 45. Параметры тау-модели, часть 2
Пролог 46. Параллельный тирон
.
Пролог 47. Параллельный тирон, часть 2
Пролог 48. Свойства тирона
.
Пролог 49. Свойства тирона, часть 2
.
Пролог 50. Семейства тирона
Пролог 51. Эволюция как тирон
Пролог 52. Я-состояния и девиации
Пролог 53. Эволюция и морфогенез
Пролог 54. Волокна и легенды
Пролог 55. Волокна и легенды, часть 2
Пролог 56. ТРЕТИЙ ЦИКЛ. Я-состояния и их структура
Пролог 57. Я-состояния и их структура, часть 2
Пролог 58. Спиральная структура
.
Пролог 59. Информация и её типы
Пролог 60. Информация и симметрия
Пролог 61. Информация и закон Вебера-Фехнера
Пролог 62. Натуральная пропорция
Пролог 63. Апекс Я-состояний
.
Пролог 64. Генеративные модели Я-состояния
Пролог 65. Нейрон
Пролог 66. Критические случайные графы
.
Пролог 67. Блохи и табакерки
Пролог 68. Чаши, табакерки и прочее
.
Пролог 69. Интерлюдия
Пролог 70. Гештальт числа e
.
Пролог 71. Гештальт числа e, часть 2
Пролог 72. ЧЕТВЁРТЫЙ ЦИКЛ. Тиронный рост
Пролог 73. Обобщённые процессы
Пролог 74. Обобщённые процессы, часть 2
Пролог 75. Обобщённые процессы и энтропия Реньи
Пролог 76. Дельта-процессы
.
Пролог 77. Дельта-аддитивные процессы
Пролог 78. Дельта-мультипликативные процессы
Пролог 79. Дельта-мультипликативные процессы, часть 2
Пролог 80. Дельта-мультипликативные процессы, часть 3
Пролог 81. Структурно-временной изоморфизм
Пролог 82. Тау-процесс и время
Пролог 83. Знаки состояний
Пролог 84. Мерные знаки и случайное блуждание
.
Пролог 85. Именные знаки и графы состояний
Пролог 86. ПЯТЫЙ ЦИКЛ. Простые числа
Пролог 87. Числа и их компоненты
Пролог 88. Время и простые числа
Пролог 89. Т-информация
Пролог 90. Новый прототип статистики Зипфа
Пролог 91. Новый прототип и гармоническая информация
.
Пролог 92. Не-целочисленные симметрии
Пролог 93. Спектры симметрии
.
Пролог 94. Преобразования симметрий
Пролог 95. Комплексные симметрии
Пролог 96. Cимметрии и структурные модальности
Пролог 97. Симметрии и характерная динамика
Пролог 98. Симметрия, энергия, излучения
Пролог 99. Симметрия системы
Пролог 100. Симметрия континуумов и траекторий
Пролог 101. Симметрия континуумов, часть 2
Пролог 102. Симметрия и масштаб
Пролог 103. Симметрия и вероятность
Пролог 104. Симметрия и вероятность, часть 2
.
Пролог 105. Преобразование симметрии континуумов
Пролог 106. Cимметрия многомерных континуумов
Пролог 107. Опыты с взаимодействием форм
Пролог 108. Опыты с взаимодействием форм, часть 2
Пролог 109. Омега-преобразование
Пролог 110. Омега-линзы
Пролог 110 (2). Омега-линзы, часть 2
Пролог 111. Геометрическое среднее и максимум энтропии
Пролог 112. Мультипликативные коллизии
Пролог 113. Смысл принципа максимума энтропии
Пролог 114. Варианты модели мультипликативных коллизий
Пролог 115. Свойства модели мультипликативных коллизий
Пролог 116. Геометрическая энтропия
Пролог 117. Специальные энтропии. Последний Пролог.
Степенные законы, распределения Парето и закон Зипфа
.
Когнитивный уровень
.
Мерцающие зоны
.
Органическая логика: резюме
Карта органической логики
.
Хвост ящерки. Метафизика метафоры.
.
Опус 1/F
.
Anschauung, научный метод Гёте
.
Закон серийности Пауля Каммерера
.
Ранние признаки критических переходов
.
Слабые сигналы
.
Меметика
.
Системный анализ и чувствительные точки
.
Спиральная динамика
.
Пролог 113. Смысл принципа максимума энтропии
 
Роман Уфимцев
16 декабря 2013 года, Калининград
Степенные распределения могут возникать в результате действия принципа максимума энтропии - мы убедились в этом в Прологе 111 и в Прологе 112 описали построенную на этой основе модель мультипликативных коллизий, которая развивает степенное распределение на некотором множестве объектов.
Однако, чтобы адекватно применить эту модель для объяснения происхождения степенных распределений, которые наблюдаются в различных природных и человеческих системах, необходимо внимательно приглядеться к двум ее основаниям - к принципу максимума энтропии и к мультипликативности взаимодействий. Мы попробуем вдуматься в их "философское" значение. Начнем по порядку, с принципа максимума энтропии.
Две трактовки принципа максимума энтропии
В первой трактовке этот принцип гласит, что система самопроизвольно приходит к такому распределению параметров, в котором шенноновская энтропия распределения максимальна. При этом распределение дополнительно должно соответствовать условиям, накладываемым структурой и правилами системы. На основании этой трактовки можно, например, найти форму распределения молекул газа по их энергии - если допустить, что молекулы содержатся в замкнутом и изолированном от внешнего мира сосуде - мы подробно разобрали техническую сторону вопроса.
В такой трактовке принцип максимума энтропии очевидно перекликается со вторым началом термодинамики - фундаментальным законом физики, в соответствии с которым энтропия замкнутой системы может либо нарастать либо оставаться неизменной, но не уменьшаться. Из этого прямо следует, что если мы возьмем любую замкнутую систему, которая оставалась таковой достаточно длительное время, то мы обнаружим ее в состоянии с максимальной энтропией.
Однако исторически принцип максимума энтропии ведет свою родословную совершенно из другого источника - не из термодинамики, а из теории вероятностей. И именно этот источник дает вторую трактовку принципа максимума энтропии, вероятно более фундаментальную. Ее можно сформулировать так: из всех гипотез о форме распределения случайной величины следует выбирать ту, при которой энтропия распределения максимальна, с учетом ограничений, накладываемых нашими знаниями о системе.
В начале 18-го века Якоб Бернулли, раздумывая над основаниями теории вероятностей, сформулировал "Принцип недостаточной причины", который и считается предтечей принципа максимума энтропии. Пусть мы рассматриваем два альтернативных и взаимоисключающих исхода A и B. Принцип Бернулли гласит, что если у нас нет никакой информации о вероятностях этих исходов, их следует полагать равновероятными. То есть, у нас в этих условиях недостаточно причин назначить одному из исходов более высокую вероятность, чем другому. Заметим, что с позиций Бернулли вероятности отражают наши знания о предмете. Если у нас о нем нет никаких знаний (кроме того, что возможно два исхода), вероятности должны быть положены равными. У любого другого распределения вероятностей должно быть основание, причина, основанная на нашем знании законов, управляющих предметом.
Итак, каждый исход следует предполагать равновероятным, если нет оснований для иного выбора. Если различными исходами являются различные значения некоторой величины, мы должны принимать однородное распределение вероятностей. Как мы знаем, именно однородное распределение обладает максимальной энтропией. Но Бернулли не говорил об энтропии - он жил и работал за два века до того, как появилось это понятие. Чтобы прийти от принципа недостаточной причины к принципу максимума энтропии, нужно было сделать немало шагов - и этот путь был пройден до конца только к середине 20-го века, а последние шаги связываются с работами американского физика Эдвина Джейнса.
От принципа недостаточной причины - к принципу максимума энтропии
Однако мы, вооруженные современными понятиями, можем пройти этот путь гораздо быстрее, напрямую. Он кажется очень простым - но только с высоты наших нынешних знаний. И тем не менее, именно Бернулли мог стать первооткрывателем и принципа максимума энтропии и самого исчисления энтропии/информации. Мог бы, если бы немного больше верил в описательную способность чисел - а в нее он, безусловно верил, ведь не даром стал одним из основателей теории вероятностей.
Итак, когда мы имеем два альтернативных исхода A и B, и более неизвестно ничего, принцип недостаточной причины требует предполагать их равновероятность: pA=pB=1/2. Именно так мы привносим минимум каких-то предубеждений в свои предположения о вероятности исходов. Предположим, что существует какая-то функция от этих вероятностей H(pA,pB), которая оказывается максимальной в том случае, если pA=pB=1/2 (или мы могли бы принять, что она в этих условиях наоборот, минимальна - это не принципиально). Обозначим этот минимум как H(1/2,1/2). Можем ли мы что-то сказать большее об этой функции исходя из общих соображений?
Вполне, и Якоб Бернулли был мастером в таких вещах. Во-первых, заметим, что если у нас имеется только один возможный исход A, он автоматически имеет вероятность, равную единице. Это значит, что не существует никаких знаний, которые мы могли бы привнести дополнительно и которые могли бы повлиять на нашу оценку вероятности исхода. То есть, мы обладаем абсолютно полным знанием об исходе. В этом случае разумно ожидать, что наша функция, отражающая количество привнесенных нами в оценку исходов знаний принимает минимальное значение, скажем, нулевое: H(1) = 0.
Далее, заметим, что когда ситуация из двух равновероятных альтернатив разрешается тем или иным образом, мы оказываемся в ситуации с одним возможным исходом - с тем, который выбрал случай. Что происходит в этот момент с функцией H? Она уменьшается от значения H(1/2,1/2) до значения H(1) = 0. Эту разность: H(1/2,1/2)-H(1) = H(1/2,1/2) резонно счесть количеством знаний, которые мы приобрели относительно двух равновероятных исходов, когда альтернатива разрешилась. Или, иначе, количеством не-знания или неопределенности в изначальной ситуации с двумя равновероятными исходами. На современном языке это количество именуется энтропией.
Пусть теперь мы знаем, что может быть четыре исхода A,B,C,D и более ничего. Принцип недостаточной причины требует, чтобы мы также назначили им равные вероятности pA=pB=pC=pD=1/4. Но чему равно знaчение функции H(pA,pB,pС,pD) в этом случае? Элементарная логика приводит к выводу, что ее значение должно быть в два раза больше, чем для случая двух возможных равновероятных исходов: 2*H(1/2,1/2). Действительно, пусть исходы A, B c одной стороны и C,D c другой стороны очень похожи. Если мы не очень внимательны или не очень зорки, мы их можем не различить между собой. Тогда мы возвращаемся к случаю с двумя исходами и неопределенность ситуации равна H(1/2,1/2). Но мы пригляделись внимательно и увидели, что на самом деле там, где мы видели один исход на самом деле есть два близких. Перед нами вновь возникает задача выбора самого "честного" распределения вероятностей между ними, и им вновь окажется равномерное распределение. И к неопределенности прибавляется еще H(1/2,1/2). Значит для ситуации с четырьмя равновероятными альтернативами H(1/4,1/4,1/4,1/4) = 2*H(1/2,1/2). Индуктивно продолжая, мы бы установили, что для ситуации с восемью исходами количество неопределенности равно 3*H(1/2,1/2), и т.д.
Полагаю, читатель понимает, что наш вывод свойств функции H совпадает с логикой, приводящей к уравнению количества информации/энтропии по Хартли. Если обозначить количество равновероятных исходов как N, энтропия по Хартли равна
Автор считает, что если бы Бернулли добрался до этого уравнения количества неопределенности (или, наоборот, количества знаний), он бы немедленно нашел и его обобщение - формулу энтропии/информации Шеннона, которая обобщает формулу Хартли для случаев с не-равновероятными исходами:
Мы знакомились с простой тропинкой, которая ведет от формулы Хартли к формуле Шеннона - Якоб Бернулли ее легко бы обнаружил. А получи Бернулли в свое распоряжение эту формулу, он мог бы количественно оценивать степень неопределенности некоторого распределения вероятностей и установить принцип, в соответствии с которым мы должны наделять исходы вероятностями так, чтобы энтропия распределения была максимальной из всех допустимых - это и есть принцип максимума энтропии.
Впрочем, история не знает сослагательных наклонений, а у науки своя неспешная поступь.
В заключение стоит заметить, что ключевым шагом является самый первый, в котором мы полагаем существование некоторой функции H, достигающей максимума при равновероятных исходах. Все остальное раскатывается как клубок. Это лишнее подтверждение пользы экстремальных принципов, когда мы считаем какое-то обычное или правильное состояние системы таким, в котором некоторая функция ее состояния достигает экстремального значения.
Главная интрига принципа максимума энтропии заключается в том, что он имеет две трактовки (проистекающие из двух разных источников), которые даже с первого взгляда коренным образом различаются по смыслу. В трактовке, ведущей свою историю от принципа Бернулли, речь идет о правиле организации наших описаний мира. Мы должны описывать мир так, чтобы не навязывать ему своих предубеждений, выражающихся в назначении различным событиям неоправданных вероятностей. Всякий раз следует выбирать такое описание, в котором нет ничего кроме того, что нам достоверно известно. Это эвристическое правило, позволяющее избегать искажений в описаниях реальности.
Физическая трактовка, с помощью которой мы, в частности, можем вывести распределение энергий молекул идеального газа, говорит о чем-то другом. Она задает правила, управляющие не нашим описанием реальности, а самой реальностью. Если физическая система управляется каким-то законом и ничем иным, то распределение параметров в ней 1) будет отвечать этому закону и 2) будет иметь максимальную энтропию среди разрешенных распределений. Это утверждение не о том, как нам лучше описывать мир, а о самом мире.
Когда в Манифесте когнитивиста говорится о том, что устройство мира соответствует устройству нашего сознания, речь идет именно об этих поразительных "совпадениях": лучший выбор при построении наших описаний мира является также и лучшим выбором самой природы.
На это можно возразить, что принцип Бернулли позволяет получать более правдоподобные описания реальности, и только поэтому он может считаться верным. Однако, Бернулли вывел его вовсе не эмпирически, не сравнивая его с реальностью. Он выдвинул его исходя из требований логики, исходя из свойств самого разума и его абстрактных построений. (Более того, он осознавал большую проблему с практической ценностью своего принципа в его исходном виде - только в очень редких обстоятельствах в природных явлениях можно видеть исходы с равными вероятностями.) Но оказывается, мир подчинен той же логике, и будто несет в себе такой же разум, как и наш собственный.
Мы лучше оценим эту удивительную двойственность принципа максимума энтропии, сопоставив его с одним идейно близким принципом, которому не повезло быть настолько же хорошо сформулированным. Мы попробуем это исправить.
Бритва Оккама и принцип минимума сложности
Близким родственником принципа недостаточной причины является знаменитая бритва Оккама. Это правило, которое предлагает нам среди альтернативных описаний мира предпочитать самое простое, содержащее в себе минимальное число сущностей и параметров. Переформулируя эту эвристику, родственность двух принципов легко разглядеть: среди всех альтернативных описаний следует выбирать содержащее в себе минимум структурной или алгоритмической сложности. Речь идет о том, что следует выбирать модель или описание, обладающее самым простым алгоритмом. "Алгоритмическая сложность" - это не фигура речи, это исчислимая величина, имеющая прямое отношение к энтропии/информации. Ее также называют алгоритмической энтропией или колмогоровской сложностью по имени русского математика А. Н. Колмогорова, который ввел эту величину в научный обиход. Колмогоровская сложность некоторой строки символов измеряется как длина программы или алгоритма, необходимого для того, чтобы воспроизвести эту строку. Чем сложнее организована строка символов, тем длиннее программа, которая нужна для ее воспроизведения. Разумеется, длина программы зависит от языка программирования, однако, этим фактором можно пренебречь, положив, что мы пишем программы на каком-то идеальном, самом экономичном и лаконичном языке.
Пусть, например, следующая запись на этом идеальном языке означает взять строку "AB" и повторить ее 10 раз:
В результате работы этой программы мы получим строку, состоящую из 20 символов:
Можно сказать, что алгоритмическая сложность этой строки равна 5 символам - именно такую длину имеет порождающая эту строку кратчайшая программа.
Еще пример: данная строка из 20 символов имеет алгоритмическую сложность в 12 символов, потому что именно такую длину имеет генерирующая ее программа:
Максимальной сложностью обладает совершенно бессистемная последовательность символов - длина программы, необходимой для ее воспроизведения равна как минимум самой длине строки. Действительно, ведь единственный способ заставить программу воспроизвести такую строку - просто записать ее в программу в полном виде:
Обратим внимание на важный момент: это бессистемная строка символов в том смысле, что мы в ней не видим системы, которая бы позволила сократить алгоритм. Но это не значит, что это случайная последовательность символов. Если нам нужно воспроизвести именно случайную последовательность, нам следует воспользоваться другой программой:
где символ "#" указывает, что программа должны вывести случайный символ. Это предельно короткая программа, так что алгоритмическая сложность случайной строки равна 4 символам. Естественно, что каждый раз мы будем получать разную случайную строку - на то она и случайная. Заметим, что другой пример строки, обладающей минимальной алгоритмической сложностью - однородная строка:
Это парадоксально: кажется полностью случайная строка имеет ту же самую сложность, что и полностью упорядоченная. Но на самом деле предельно высокой сложностью обладает не однородная строка и не случайная строка, а бессистемная строка, которая является совершенно не случайной, а наоборот, предельно закономерной. Это легко понять: вообразим, что мы наугад тыкаем в раскрытую книгу пальцем и всегда попадаем на одно и то же слово. Ясно, что эта ситуация коренным образом отличается от той, когда мы попадаем совершенно случайно в разные слова. Важность этого нюанса мы увидим чуть далее.
Отметим, что несмотря на казалось бы совершенно отдаленное отношение сложности по Колмогорову к энтропии по Шеннону и Хартли, в действительности можно показать их глубокую взаимосвязь - но мы тут не будем вдаваться в эту тему.
Итак, мы можем смотреть на некоторую модель или описание как на алгоритм, воспроизводящий требуемый набор свойств (требуемую "строку"). Тогда бритва Оккама требует выбирать описание, обладающее минимальной алгоритмической энтропией.
Исторический сюжет, который может послужить примером ситуации, в которой этот принцип оказался бы полезен - противостояние систем Птолемея и Коперника. Система Птолемея - это модель мироздания, основанная на наивно-религиозном убеждении в том, что в центре вселенной должна находиться Земля:
Вокруг Земли вращаются по орбитам небесные светила, в том числе и Солнце. Однако, при идейной правильности такой конструкции, она имела некоторый недостаток: в ее рамках было нельзя объяснить феномен смены направления движения планет по небесному своду. Скажем, Юпитер в течение нескольких недель поступательно передвигается относительно звезд. Но затем он совершает петлю и некоторое время движется в обратную сторону. Затем возвращается к "правильному" движению. Чтобы объяснить это явление Птолемей ввел в свою систему так называемые эпициклы - он предположил, что кроме вращения вокруг Земли каждое светил дополнительно вращается по небольшой орбите вокруг некоторого центра, который в свою очередь и вращается вокруг Земли по круговой орбите. Тогда те моменты, когда Юпитер двигается по своему эпициклу назад, мы видим смену направления его движения по небосводу.
Коперник предложил другую систему: в ней в центре находится Солнце (читатель наверное наслышан). Система Коперника смогла объяснить петли Юпитера и других светил без введения эпициклов, было достаточно простого кругового движения планет, чтобы мы с Земли иногда видели петли в движении планет. Даже не вдаваясь в точность предсказаний движения планет по небесному своду, система Коперника, очевидно, обладает меньшей алгоритмической сложностью, и при этом способна "воспроизвести правильную строку". Таким образом, если руководствоваться принципом Оккама, нам следует предпочесть именно систему Коперника.
Но есть ли у бритвы Оккама свой аналог в свойствах самой реальности как он есть у принципа недостаточной причины? Автор уверен в положительном ответе. Попробуем его сформулировать, назовем его принципом минимальной структурной сложности: система, потенциально способная обладать различной структурой имеет структуру, обладающую минимальной сложностью по Колмогорову с учетом внешних требований к свойствам этой системы.
Вот здесь и оказывается важно различие между случайными строками и предельно закономерными. Документируя положение и скорости молекул в сосуде с газом, мы каждый раз будем получать набор цифр, близкий к случайному - "случайную строку". Но если бы мы каждый раз получали бы один и тот же результат, это бы говорило о том, что система находится в предельно структурно сложном состоянии.
Отметим, что есть очень важный для нас пример структур, обладающих низкой алгоритмической сложностью: фракталы развиваются в результате повторения одних и тех же генерирующих преобразований, применяемых к разным масштабным уровням. Алгоритмически это простые структуры. Может быть, принцип минимальной структурной сложности способен объяснить такую всеобъемлющую распространенность фрактальных структур в различных явлениях мира.
Впрочем, это пока лишь смутная идея.
Далее, мы видели, как принцип максимума энтропии связан со вторым началом термодинамики. Но может быть, принцип минимума структурной сложности подсказывает нам еще одно следствие второго начала. Его можно сформулировать так: если в исходный момент времени структура системы не является наименее сложной, она эволюционирует в строну уменьшения сложности, достигая возможного минимума.
Если эта трактовка второго начала термодинамики верна, возникает вопрос, адресованный к его обычному толкованию: если энтропия мира как системы только увеличивается, почему вселенная еще не пришла в состояние максимума энтропии (и минимума структурной сложности), который именуют "тепловой смертью"? Наука не может ответить на этот вопрос. Может быть - к этому ответу склоняются материалисты - еще не успела. А может быть, наша вселенная - не закрытая, а открытая система и откуда-то получает ресурс, позволяющий ей справляться со вторым началом термодинамики. Этого мнения придерживаются идеалисты, к числу которых себя причисляет и автор. У нас пока не достаточно знаний, чтобы поставить точку в этой дилемме.
Завершим этот Пролог тем, что "разделим шкуру не убитого медведя" и восхитимся тем, что бритва Оккама не только способна отсекать все лишнее от наших умопостроений, но и отсекает все лишнее от структуры мира, так что он предстает перед нами в простейшем, самом элегантном облике из всех возможных. Как тут не вспомнить Лейбница, который полагал, что мы живем в лучшем из возможных миров?
Ваш комментарий
image Поля, отмеченные звездочкой, нужно обязательно заполнить
Заголовок комментария:
image Текст комментария: (не более 2000 символов, HTML-разметка удаляется)
image Ваше имя:
Ваш E-mail:
image Сколько будет дважды два? (ответьте цифрой, это проверка от спам-рассылок)
Отправить комментарий
Главные темы
Внимание (8)Геогештальт (1)Гештальт (16)Динамика внимания (5)Инсайт (5)Интуиция (2)Кибернетика (5)Когнитивное управление (6)Когнитивный анализ (4)Когнитивный словарь (5)Культура наблюдения (5)Мерцающие зоны (7)Метафизика (3)Метафора (13)Механизмы восприятия (15)Мифы и парадигмы (7)Органическая логика (5)Прогнозирование (6)Роль языка (4)Симметрии (5)Синхронизмы (5)Сложные системы (10)Степенной закон (8)Творческое мышление (5)Три уровня систем (4)Управление знаниями (3)Фазы развития (7)Фракталы (18)Цветные шумы (9)
КОГНИТИВИСТ: когнитивные методы и технологии © Роман Уфимцев, при поддержке Ателье ER