КОГНИТИВИСТИдейное ядро²Прологи
Пролог 36. События и причинность
Прологи: наука о сознании становится точной
Манифест когнитивиста
.
Узелки на распутку
.
Прологи
Пролог 1. Когнитивный порядок
Пролог 2. Сигнатура характерного масштаба
Пролог 3. Степенной закон
Пролог 4. Три типа степенных распределений
Пролог 5. Закон Зипфа, сигнатура β = 1
Пролог 6. Цветные шумы, сигнатура α = 1
.
Пролог 7. Розовый шум и модель Бака-Снеппена
Пролог 8. Розовый шум и модель релаксации
Пролог 9. Розовый шум: шипелки и фрактальное блуждание
Пролог 10. Население городов и закон Зипфа
Пролог 11. Масштабно-инвариантные сети
Пролог 12. Фракталы и закон Зипфа
Пролог 13. Дробление континуума
Пролог 14. Социально-географические волокна
Пролог 15. Закон Зипфа в случайных текстах
Пролог 16. Тексты как фракталы
Пролог 17. Когнитивные фракталы
Пролог 18. β и размерность Хаусдорфа
Пролог 19. Образы когнитивных фракталов
Пролог 20. Когнитивные волокна
Пролог 21. Математика когнитивных фракталов
Пролог 22. Стохастические когнитивные фракталы
Пролог 23. Сравниваем Россию и Польшу
Пролог 24. От Швейцарии до Афганистана
Пролог 25. Гармониум
Пролог 26. Шум когнитивных фракталов
Пролог 27. Шум когнитивных процессов
Пролог 28. Розовый шум в поведении людей
Пролог 29. Шум в динамике зрительного внимания
Пролог 30. Изображения и двухмерный розовый шум
.
Пролог 31. Физическая и когнитивная релаксация
Пролог 32. Когнитивная релаксация и цветные шумы
Пролог 33. ВТОРОЙ ЦИКЛ. Дробление времени
Пролог 34. Когнитивное дробление времени
Пролог 35. Время как текст
Пролог 36. События и причинность
Пролог 37. Четыре причины Аристотеля
Пролог 38. Экзогенные причины
Пролог 39. Генеративные модели причинности
Пролог 40. Генеративные модели причинности, часть 2
Пролог 41. Гештальт-причинность
Пролог 42. Тау-модель
Пролог 43. Я-состояния и тироны
Пролог 44. Параметры тау-модели
.
Пролог 45. Параметры тау-модели, часть 2
Пролог 46. Параллельный тирон
.
Пролог 47. Параллельный тирон, часть 2
Пролог 48. Свойства тирона
.
Пролог 49. Свойства тирона, часть 2
.
Пролог 50. Семейства тирона
Пролог 51. Эволюция как тирон
Пролог 52. Я-состояния и девиации
Пролог 53. Эволюция и морфогенез
Пролог 54. Волокна и легенды
Пролог 55. Волокна и легенды, часть 2
Пролог 56. ТРЕТИЙ ЦИКЛ. Я-состояния и их структура
Пролог 57. Я-состояния и их структура, часть 2
Пролог 58. Спиральная структура
.
Пролог 59. Информация и её типы
Пролог 60. Информация и симметрия
Пролог 61. Информация и закон Вебера-Фехнера
Пролог 62. Натуральная пропорция
Пролог 63. Апекс Я-состояний
.
Пролог 64. Генеративные модели Я-состояния
Пролог 65. Нейрон
Пролог 66. Критические случайные графы
.
Пролог 67. Блохи и табакерки
Пролог 68. Чаши, табакерки и прочее
.
Пролог 69. Интерлюдия
Пролог 70. Гештальт числа e
.
Пролог 71. Гештальт числа e, часть 2
Пролог 72. ЧЕТВЁРТЫЙ ЦИКЛ. Тиронный рост
Пролог 73. Обобщённые процессы
Пролог 74. Обобщённые процессы, часть 2
Пролог 75. Обобщённые процессы и энтропия Реньи
Пролог 76. Дельта-процессы
.
Пролог 77. Дельта-аддитивные процессы
Пролог 78. Дельта-мультипликативные процессы
Пролог 79. Дельта-мультипликативные процессы, часть 2
Пролог 80. Дельта-мультипликативные процессы, часть 3
Пролог 81. Структурно-временной изоморфизм
Пролог 82. Тау-процесс и время
Пролог 83. Знаки состояний
Пролог 84. Мерные знаки и случайное блуждание
.
Пролог 85. Именные знаки и графы состояний
Пролог 86. ПЯТЫЙ ЦИКЛ. Простые числа
Пролог 87. Числа и их компоненты
Пролог 88. Время и простые числа
Пролог 89. Т-информация
Пролог 90. Новый прототип статистики Зипфа
Пролог 91. Новый прототип и гармоническая информация
.
Пролог 92. Не-целочисленные симметрии
Пролог 93. Спектры симметрии
.
Пролог 94. Преобразования симметрий
Пролог 95. Комплексные симметрии
Пролог 96. Cимметрии и структурные модальности
Пролог 97. Симметрии и характерная динамика
Пролог 98. Симметрия, энергия, излучения
Пролог 99. Симметрия системы
Пролог 100. Симметрия континуумов и траекторий
Пролог 101. Симметрия континуумов, часть 2
Пролог 102. Симметрия и масштаб
Пролог 103. Симметрия и вероятность
Пролог 104. Симметрия и вероятность, часть 2
.
Пролог 105. Преобразование симметрии континуумов
Пролог 106. Cимметрия многомерных континуумов
Пролог 107. Опыты с взаимодействием форм
Пролог 108. Опыты с взаимодействием форм, часть 2
Пролог 109. Омега-преобразование
Пролог 110. Омега-линзы
Пролог 110 (2). Омега-линзы, часть 2
Пролог 111. Геометрическое среднее и максимум энтропии
Пролог 112. Мультипликативные коллизии
Пролог 113. Смысл принципа максимума энтропии
Пролог 114. Варианты модели мультипликативных коллизий
Пролог 115. Свойства модели мультипликативных коллизий
Пролог 116. Геометрическая энтропия
Пролог 117. Специальные энтропии. Последний Пролог.
Степенные законы, распределения Парето и закон Зипфа
.
Когнитивный уровень
.
Мерцающие зоны
.
Органическая логика: резюме
Карта органической логики
.
Хвост ящерки. Метафизика метафоры.
.
Опус 1/F
.
Anschauung, научный метод Гёте
.
Закон серийности Пауля Каммерера
.
Ранние признаки критических переходов
.
Слабые сигналы
.
Меметика
.
Системный анализ и чувствительные точки
.
Спиральная динамика
.
Пролог 36. События и причинность
 
Роман Уфимцев
9 апреля 2012 года, Калининград
В предыдущем прологе мы пришли к гипотезе о существовании двух типов событий, из которых складываются хронологии самой разной природы. Первый тип событий - оно-события, которые являются результатом процессов, управляемых физическим порядком. Второй тип - Я-события, которые возникают в результате действия когнитивного порядка мира. Мы предполагаем, что взаимодействие физического и когнитивного порядка в натуральных феноменах приводит к смешанному составу хронологий как потоков событий.
Однако, говоря о хронологиях и их анализе, мы должны несколько разобраться в теме причинности, поскольку причинность – это организующая сила хронологий, она определяет связи и последовательность между событиями. И, как мы далее увидим, причинность также имеет два различимых аспекта - физический и когнитивный.
Причинность и вероятность
Мы говорим, что событие А является причиной последующего события B, если возникновение события А делает более вероятным возникновение события В. Иногда это означает, что причина А с вероятностью почти 100% вызовет следствие B. Однако, в других случаях причина А лишь незначительно повышает вероятность события B, и тем не менее, она является полноценной причиной. И тут есть некоторый парадокс.
Пусть мы звоним в дверь квартиры, в которой живёт наш друг. Это событие, следствием которого может быть другое событие - дверь распахнётся, и мы увидим своего друга. Однако, если дома никого не окажется, наша причина не вызовет следствия, за событием А событие В не последует. При этом, хотя причина А в этом случае и не вызовет события В, она, безусловно, делает его более вероятным. Действительно, ведь при прочих равных условиях шансы, что дверь откроется гораздо выше, если вы позвоните в дверь, а не будете перед ней тихо стоять. Таким образом, причина А может не привести в конкретном случае к следствию В, но это не отрицает существования между событиями А и В причинно-следственной связи.
Однако, есть ещё один важный момент: период времени между причиной и следствием. Вы можете стоять перед дверью, не позвонив в звонок, и если вы будете стоять достаточно долго, рано или поздно вы увидите своего друга. Он может выйти, чтобы купить батон, а может вернуться с прогулки. И вообще-то, с этой точки зрения, позвоните ли вы в дверь или нет, не имеет значения – вы всё равно увидите своего друга. Получается парадокс: звонок в дверь не делает встречу с другом более вероятной.
Разумеется, всё дело во времени. Позвонив в дверь, мы делаем гораздо более вероятной встречу с другом в течение следующей минуты после звонка, но не в течение следующей недели. Таким образом, говоря о причинах и следствиях, нам, во-первых, следует понимать, что причина вызывает следствие не со стопроцентной вероятностью, а во-вторых, эта вероятность зависит от периода времени между событием А и событием В. Для краткости мы будем именовать этот период лагом.
Вообразим, что мы решили устроить научный эксперимент на своём друге (и на его терпении), и для этого постоянно приходим к нему под дверь, звоним и замеряем время, в течение которого наша причина (звонок в дверь) вызовет следствие (мы видим нашего эмоционального друга). Проделав множество опытов, мы отобразим их результат на следующей диаграмме:
Тут по оси X - время, прошедшее от события-причины, а по оси Y - доля опытов, в которых к данному моменту времени мы получили ожидаемое следствие. То есть, это вероятность к этому моменту получить нужное следствие. Обратим внимание на несколько вещей. Во-первых, даже прождав более 5 минут, мы далеко не во всех опытах дождались нужного следствия. Взяв период в 5 минут как предельный, мы можем сказать, что звонок в дверь повышает вероятность увидеть друга не до 1 (то есть, 100%), а всего лишь до некоторой планки Pf < 1. В остальных случаях друга просто не оказывается дома.
Далее, за пределами периода в 5 минут график вероятности продолжает очень медленно расти. И если мы возьмем достаточно длинную дистанцию времени, например, 1 неделю, то мы получим вероятность события В очень близкую к 1. Иными словами, мы почти наверняка увидим друга, если будем сидеть под его дверью неделю. Хотя это событие мы уже вряд ли можем назвать следствием звонка в дверь.
Наконец, обратим внимание на период в 1 минуту после звонка. Именно в этой точке вероятность получить нужное следствие растёт быстрее всего, потому что чаще всего наш друг открывал дверь примерно через минуту после звонка.
Итак, эта кривая наглядно отражает происходящее с течением времени накопление вероятности возникновения следствия после заданной причины (поэтому такие графики называют графиками куммулятивной вероятности). Она позволяет увидеть важнейшие особенности изучаемой причинно-следственной связи. В некотором смысле её форма - это характерный отпечаток, роспись причинно-следственной связи. И конечно, для разных по природе причинно-следственных связей форма этой кривой различается.
Однако, дальше мы будем в основном пользоваться диаграммой, производной от графика куммулятивной вероятности. Это уже знакомая нам диаграмма распределения плотности вероятности или, попросту, гистограмма. Её форма отражает скорость роста вероятности на куммулятивном графике:
Обратим внимание на точку T = 1 мин. Именно в этот момент график куммулятивной вероятности рос быстрее всего, и на диаграмме плотности вероятности мы видим пик. Затем скорость роста куммулятивной вероятности снижается - и диаграмма плотности вероятности также постепенно снижается до нуля.
Поскольку диаграмма распределения плотности вероятности - это просто гистограмма, строить её по опытным данным периодов между причиной и следствием не сложно – на ней мы просто отмечаем число опытов, в которых после звонка дверь открылась, например, через 30 сек., через 31 сек., через 32 сек. - и т.д. На практике, для того, чтобы построить гистограмму, имеющую ясную форму, требуется очень много опытов, и этим она неудобна для практического анализа. Но для теоретического разговора она нам будет полезна.
Итак, причинно-следственные связи хорошо характеризуются графиками куммулятивной вероятности или распределениями плотности вероятности. И, с этой точки зрения, какие же типы причинно-следственных связей встречаются в натуральных феноменах?
Физическая причинность
Вспомним опыт Галилея, бросавшего чугунные ядра с Пизанской башни. Событием А, причиной, мы будем считать "запуск" ядра, когда Галилей разжимал руку и отпускал ядро в свободное падение. Следствием этого является падение ядра, событие B. Между причиной и следствием лежит дистанция времени, лаг, который, однако, от одного опыта к другому несколько варьирует. Например, в одних случаях Галилей мог получить время свободного падения 1,5 сек., в других - 1,6 или 1,4 сек. Если бы Галилей по результатам очень многих опытов построил гистограмму времён падения – а мы их понимаем как дистанции времени между причиной и следствием – он бы получил знакомое нам распределение Гаусса или нормальное распределение:
Диаграмма плотности вероятности:
Нормальное распределение при различных параметрах
Оно имеет симметричную колоколообразную форму и среднее значение совпадает с максимальным. Это значение является "правильным" или "типичным" промежутком времени между причиной и следствием. Отклонения от него вызываются суммой различных случайных факторов, вроде флуктуаций плотности воздуха, неточностями при замере времени и т.д.
Причинно-следственные связи, которые характеризуются гауссовой формой диаграммы плотности вероятности, весьма распространены в физических явлениях. Всякий раз, когда между физической причиной и физическим следствием имеется характерный временной лаг – пусть даже очень маленький – мы скорее всего увидим нормальное, гауссовое распределение дистанций времени между причиной и следствием.
Однако, часто встречается и совершенно другой тип физических причинно-следственных связей. Вообразим, что вместо того, чтобы бросать чугунное ядро, Галилей бы осторожно ставил его на мраморные перила и ждал бы, пока ядро скатится с них и упадёт:
(Пусть для простоты эти перила совершенно гладкие и горизонтальные, а ядро может скатиться только в одну сторону.)
Отчего может скатиться ядро? От порыва ветра. Его может задеть проходящий человек или клюнуть голубь – мало ли отчего. Но разумно предположить, что и порывы ветра и голуби создают постоянно и равномерно увеличивающиеся шансы для ядра скатиться - чем дольше он лежит на перилах, тем они выше. Дело выглядит так: пусть Галилей разместил на перилах 100 ядер. Если через пять минут половина из них упала, то спустя ещё 5 минут упадёт половина из оставшихся и т.д.
Полагаю, читатель догадался, что мы говорим о процессе, который очень похож на радиоактивный распад. Если пренебречь временем собственно падения ядра, то длительность времён между причиной - а ею мы будем считать помещения ядра на перила – и следствием, его падением, будет соответствовать экспоненциальной диаграмме плотности вероятности - кривая отвечает экспоненциальной функции, это экспоненциальное распределение:
Диаграмма плотности вероятности:
экспоненциальное распределение при различных значениях параметра
Обратим внимание, что в отличие от первого типа причинно-следственных связей, тут с максимальной вероятностью следствие случится немедленно после причины.
Итак, мы имеем два типа физических причинно-следственных связей, которые характеризуются разными диаграммами распределения плотности вероятности. В чём же ключевая разница между этими типами причинности? Чем отличается ситуация, когда Галилей просто бросает ядро от ситуации, в которой он его ставит на перила?
Эту вроде бы простую, но довольно тонкую разницу можно описывать, характеризуя причины как "неравновесные" и "квазиравновесные". Неравновесная причина создает систему, обладающую существенной физической неравновесностью. Причина немедленно заставляет ядро "действовать", то есть, падать.
Квазиравновесная причина создает условно равновесную систему, то есть, систему с хрупким равновесием. Хотя это равновесие хрупкое, тем не менее, причина не заставляет ядро немедленно устремляться к следствию. Она лишь создает условия, в которых следствие рано или поздно наступит. И когда оно наступает, это обычно выглядит не как непосредственное действие внешней причины, а как результат внутренних процессов в системе.
"Помещая ядро в воздух" без опоры, Галилей создает сугубо неравновесную физическую систему - ядро немедленно устремляется к земле. При этом его действие выглядит как непосредственная, прямая причина падения ядра. Во втором случае Галилей создает квазиравновесную систему, и когда ядро всё же падает, это выглядит уже не как прямое следствие действий исследователя, а как результат случайностей вроде порывов ветра – хотя в обоих случаях именно действия исследователя являются исходной причиной падения ядра с башни.
Обратим внимание: в первом случае ядро очевидным образом стало "жертвой" исследователя, во втором случае кажется, что ядро больше "само виновато". Это позволяет внести условную, но удобную терминологию: первый тип причин мы будем именовать экзогенными, то есть, происходящими извне. Второй тип - эндогенными, то есть, происходящими изнутри.
Итак, экзогенные причинно-следственные связи характеризуются нормальными распределениями периодов между следствием и причиной, а эндогенные - экспоненциальными распределениями.
Когнитивная причинность
В отличие от причинности физической, вызванной действием физических законов, в мире существует и причинность когнитивная, управляемая собственными законами сознания. Двум основным типам физических причинно-следственных связей – экзогенных и эндогенных – прямо соответствует два типа когнитивных причинно-следственных связей. Сначала дадим им краткую характеристику, отражающую их ключевые статистические свойства.
Для экзогенных когнитивных причинно-следственных связей характерное распределение временных лагов отвечает уже знакомому нам логнормальному распределению:
Диаграмма плотности вероятности:
Логнормальное распределение при различных параметрах
Наконец, для эндогенных когнитивных причинно-следственных связей лаги обладают степенным распределением плотности вероятности (его часто именуют распределением Парето, но мы будем его называть степенным):
Диаграмма плотности вероятности:
Степенное распределение при различных значениях параметра
В результате мы имеем четыре основных типа причинно-следственных связей, которые организуются в квадратную матрицу:
Можно заметить, что между экзогенными типами причинности с одной стороны и эндогенными типами с другой есть попарное сходство: распределение экзогенных физических лагов (1) по форме напоминает распределение экзогенных же, но когнитивных лагов (2). Подобное сходство есть и в эндогенной паре - (3) и (4).
Суть этих парных отношений оказывается чрезвычайно простой, но это та самая простота, которая проливает свет на самые основы отношений между физическим и когнитивным порядком. Мы посвятим этой теме отдельный разговор, а пока лишь кратко опишем дело.
Мы знаем, как связаны между собой нормальное и логнормальное распределения: если мы взглянем на логнормальное распределение, построив его в координатах, в которых ось X является не линейной, а логарифмической, мы увидим кривую, точно соответствующую нормальному распределению. Применительно к диаграммам распределения временных лагов между причинами и следствиями ось X означает длительность лага, то есть, время. Если длительность лагов распределена логнормально, то взглянув на распределение не в линейном, а в логарифмическом времени, мы бы увидели обычное нормальное распределение:
Но совершенно такое же парное соотношение имеется и между двумя видами эндогенной причинности: если мы отобразим степенное распределение когнитивных эндогенных лагов в координатах, в которых ось времени взята не линейной, а логарифмической, мы увидим кривую, точно соответствующую экспоненциальной функции, то есть, распределению физических эндогенных лагов:
Таким образом, разница между физическими и когнитивными видами причинности может базироваться на разном ходе времени в феноменах физического и когнитивного порядка. В первом случае - это обычный линейный ход времени, во втором - логарифмически замедляющееся время. Впрочем, не будем забегать вперед.
Обратимся теперь к примерам явлений, в которых наблюдаются статистические признаки механизмов когнитивной причинности.
Пример 1: Инкубационные периоды
Хорошим примером когнитивной экзогенной (то есть, происходящей извне) причинности является причинно-следственная связь между инфицированием организма (причина) и появлением симптомов заболевания (следствие). Многократно подтверждённым на опыте фактом является то, что лаги между причиной и следствием тут распределяются логнормально, и это проверено для разных типов инфекций и организмов. Универсальность этой закономерности позволяет считать её одним из фундаментальных законов эпидемиологии (который, правда, пока находится на стадии активной проверки).
Например, вот так выглядит распределение лагов между моментами инфицирования и моментом появления симптомов полиомиелита у людей:
Если, как мы полагаем, инфицирование и появление симптомов инфекционной болезни связаны механизмом когнитивной причинности, то инкубационный период заболевания хотя бы отчасти определяется когнитивными факторами организма, то есть, его сознанием. Это значит, что сознание может каким-то образом влиять на инкубацию инфекционных болезней - замедлять её или, наоборот, ускорять. Мы не станем спекулировать на эту тему, но статистически достоверная проверка этой гипотезы, которая однажды будет сделана, станет важным шагом вперёд в нашем понимании механизмов развития инфекционных заболеваний (и, возможно, не только инфекционных). Особенно интересно классифицировать инфекционные заболевания по степени логнормальности их инкубационных периодов. Мы знаем, что логнормальные распределения в зависимости от параметров могут приобретать форму, близкую к обычным нормальным распределениям (на приведённой выше иллюстрации формы логнормальных распределений при различных параметрах – коричневая кривая) или приближаться к степенным (красная кривая).
Было бы интересно проверить формы распределений для различных инфекций и классифицировать их как более "физические" - то есть те, распределение инкубационных периодов которых ближе к нормальному распределению – и как более "когнитивные" - те, инкубация которых больше скошена, больше отклоняется от нормального распределения. Например, следует предполагать, что грипп и туберкулёз окажутся гораздо в большей степени "когнитивными инфекциями", нежели корь или дизентерия.
В этой связи любопытно, как принято объяснять логнормальность распределений инкубационных периодов самими биологами и эпидемиологами. Тут они не стали ходить далеко, и объясняют дело просто: длительность инкубационного периода, говорят они, является случайно величиной, которая есть произведение многих других случайных величин, например, генетических предрасположенностей, состояния организма, режима питания и т.д. Известно же, что произведение случайных величин стремится к логнормальному распределению (а сумма случайных величин - к нормальному распределению) - и тут именно тот случай.
Однако, вспомним о другом примере, о котором мы уже говорили не раз: распределение роста людей. Например, мы знаем, что рост мужчин европеидной расы (и других рас) распределяется нормально, то есть имеет симметричную колоколообразную форму. Так же распределяются и многие другие признаки организмов одного вида и пола. Например, объем лёгких (к слову, именно на примере объема лёгких рекрутов эта закономерность и была впервые обнаружена). Но ведь рост людей или объем их лёгких также является сложным продуктом многочисленных случайных величин - генетики, образа жизни, питания и т.д. Почему же в одном случае мы получаем произведение этих случайных величин, а во втором - их сумму? Почему в случае роста тела роль случайных факторов суммируется и даёт нормальное распределение, а в случае инкубационных периодов болезней их роль перемножается и мы получаем логнормальное?
Это трудные вопросы, и ответа на них нет. Оказывается, что рассуждения о действующих тут каких-то "мультипликативных механизмах" (то есть, "умножательных"), которые и приводят к логнормальным распределениям – это всего лишь иллюзия объяснения, которое в действительности ничего не объясняет.
Пример 2: Лаг между получением письма и ответом на него
В связи с проблемой труднообъяснимых статистических особенностей различных натуральных и социальных явлений мы уже описывали существующее сегодня противостояние двух научных лагерей. В первом лагере – "степенщики", которые повсюду находят степенные распределения. "Степенщикам" яростно противостоит лагерь "логнормальщиков", которые всякий раз оспаривают "степенщиков". Когда те в очередной раз пишут о том, что они ещё где-то обнаружили степенной закон, "логнормальщики" тут же возражают и доказывают, что обнаружен не степенной закон, а логнормальный. Противостояние двух лагерей усугубляется тем, что в некоторых случаях степенное распределение очень трудно отличить от логнормального.
Хороший пример - спор, который развернулся в 2005 году вокруг работ видного в сложно-системном научном сообществе человека, Барабаси (он известен тем, что первый исследовал масштабно-инвариантные сети, мы говорили о них). Тогда он со своими соавторами опубликовал серию статей, в которых анализировались распределения временных лагов между получением писем и ответом на них. Барабаси на примере переписки Дарвина и Эйнштейна рассмотрел и классическую бумажную переписку, и электронную переписку, используя данные почтового университетского сервера.
Барабаси с соавторами пришёл к следующему выводу: распределение временных лагов между получением корреспонденции и ответом на неё обычно соответствует степенному закону, причём показатель степени для бумажных писем Дарвина и Эйнштейна близок к -3/2, а для электронных сообщений близок к -1. Например, вот так выглядит частотное распределение временных лагов для ответов Дарвина и Эйнштейна:
(Обратим внимание, что используется не ранговое, а частотное распределение, то есть, диаграмма плотности вероятности.)
А вот так - распределение лагов в электронной переписке:
(розовые линии отмечают закон с показателем степени -1)
На эту серию публикаций Барабаси (который, очевидно, принадлежит стану "степенщиков") немедленно отреагировал лагерь "логнормальщиков". Они сумели доказать, что, по крайней мере для электронной переписки, распределение временных лагов не хуже, а может быть, и лучше соответствует не степенным, а логнормальным распределениям.
А как посмотрим на этот вопрос мы?
Являются ли эти распределения степенными или логнормальными – в любом случае получение письма оказывается когнитивной причиной для ответа. Если эта причина больше экзогенная по своей природе – например, если письма требуют немедленного реагирования - то мы увидим логнормальное распределение лагов. Если же письма являются скорее эндогенными причинами для ответа - мы увидим степенное распределение. И, пожалуй, это позволяет понять, почему лаги в электронной переписке ближе к логнормальным распределениям: электронные письма по духу и содержанию существенно отличаются от обстоятельных и длинных писем, которые были в ходу у Эйнштейна и Дарвина.
Современная электронная почта служит скорее не для обмена мыслями и переживаниями, как почта прошлого, а для обмена приказами, управляющими сигналами. Получив сообщение от делового партнёра или коллеги, который желает, чтобы мы ему что-то быстро сообщили или переслали, мы оказываемся в положении отпущенного в свободное падение ядра, на нас воздействует экзогенная причина.
Напротив, письма прошлого были скорее поводом для размышления, продуманного и неспешного ответа. Ответ рождался не как непосредственная реакция на полученное сообщение, а в результате какой-то собственной внутренней динамики сознания. Письма были не экзогенными, а эндогенными когнитивными причинами.
1
продолжаем следовать
за автором... спасибо :)
Юрий (12.04.2012 13:48)
2
Пожалуйста, но будьте готовы...
Впереди ещё огромная территория. :)
Роман Уфимцев (12.04.2012 16:20)
Ваш комментарий
image Поля, отмеченные звездочкой, нужно обязательно заполнить
Заголовок комментария:
image Текст комментария: (не более 2000 символов, HTML-разметка удаляется)
image Ваше имя:
Ваш E-mail:
image Сколько будет дважды два? (ответьте цифрой, это проверка от спам-рассылок)
Отправить комментарий
Главные темы
Внимание (8)Геогештальт (1)Гештальт (16)Динамика внимания (5)Инсайт (5)Интуиция (2)Кибернетика (5)Когнитивное управление (6)Когнитивный анализ (4)Когнитивный словарь (5)Культура наблюдения (5)Мерцающие зоны (7)Метафизика (3)Метафора (13)Механизмы восприятия (15)Мифы и парадигмы (7)Органическая логика (5)Прогнозирование (6)Роль языка (4)Симметрии (5)Синхронизмы (5)Сложные системы (10)Степенной закон (8)Творческое мышление (5)Три уровня систем (4)Управление знаниями (3)Фазы развития (7)Фракталы (18)Цветные шумы (9)
КОГНИТИВИСТ: когнитивные методы и технологии © Роман Уфимцев, при поддержке Ателье ER